skip to main content


Search for: All records

Creators/Authors contains: "Narayanan, Amal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Three-dimensional (3D) printing allows for creation of patient-specific implants. However, development of new synthetic materials for 3D printing has been relatively slow with only a few polymers available for tissue engineering applications. Most of these polymers require harsh processing conditions like high temperatures and pressures or are mixed with a combination of leachable additives like plasticizers, initiators, crosslinkers, and solvents to enable 3D printing. Therefore, to propel the development of new polymers for ambient temperature, additive-free 3D printing it is necessary to systematically understand the relationship between the structure of a polymer with its 3D printability. Herein, three homopolyesters were synthesized, each with a common backbone but differing in the length of their saturated, aliphatic pendant chains with 2, 6, or 15 carbons. The physical properties such as the glass transition temperature ( T g ) and the rheological properties like shear thinning, temperature response, and stress relaxation were correlated to the individual polymer's 3D printability. The 3D printability of the polymers was assessed based on four criteria: ability to be extruded as continuous filaments, shape fidelity, the retention of printed shape, and the ability to form free hanging filaments. We observed that the polymers with longer side chains can be extruded at low temperature and pressure because the long side chains act as internal diluents and increase the flowability of the polymer. However, their ability to retain the 3D printed shape is adversely affected by the increase in side chain length, unless the side chains form ordered structures leading to immediate recovery of viscosity. The insight derived from the systematic investigation of the effect of polymer structure on their rheology and 3D printability can be used to rationally design other polymers for extrusion-based direct-write 3D printing. 
    more » « less
  4. Abstract

    Recognizing the potential for synthetic adhesives that can function in wet environments, elements of mussel foot proteins such asL‐3,4‐dihydroxyphenylalanine (DOPA) and phosphoserine have been incorporated into synthetic adhesives. Such adhesives have corroborated the advantage of surface active groups like DOPA, but have not yet demonstrated superior performance in wet or underwater environments, without using organic solvents. What has been conspicuously absent from such designs is the effect of hydrophobic components in the performance of underwater adhesives. Herein it is shown that incorporation of hydrophobic groups in low modulus polyester adhesives provides very high lap‐shear strength and resistance to water penetration. In addition to the excellent performance in wet conditions, the designed adhesive can be applied underwater without any solvent, is biodegradable, and is designed from soybean oil, which is a readily available and renewable resource.

     
    more » « less